Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Radiol Med ; 126(10): 1258-1272, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1290023

ABSTRACT

PURPOSE: Chest imaging modalities play a key role for the management of patient with coronavirus disease (COVID-19). Unfortunately, there is no consensus on the optimal chest imaging approach in the evaluation of patients with COVID-19 pneumonia, and radiology departments tend to use different approaches. Thus, the main objective of this survey was to assess how chest imaging modalities have been used during the different phases of the first COVID-19 wave in Italy, and which diagnostic technique and reporting system would have been preferred based on the experience gained during the pandemic. MATERIAL AND METHODS: The questionnaire of the survey consisted of 26 questions. The link to participate in the survey was sent to all members of the Italian Society of Medical and Interventional Radiology (SIRM). RESULTS: The survey gathered responses from 716 SIRM members. The most notable result was that the most used and preferred chest imaging modality to assess/exclude/monitor COVID-19 pneumonia during the different phases of the first COVID-19 wave was computed tomography (51.8% to 77.1% of participants). Additionally, while the narrative report was the most used reporting system (55.6% of respondents), one-third of participants would have preferred to utilize structured reporting systems. CONCLUSION: This survey shows that the participants' responses did not properly align with the imaging guidelines for managing COVID-19 that have been made by several scientific, including SIRM. Therefore, there is a need for continuing education to keep radiologists up to date and aware of the advantages and limitations of the chest imaging modalities and reporting systems.


Subject(s)
COVID-19/diagnostic imaging , Health Care Surveys , Lung/diagnostic imaging , Radiologists/statistics & numerical data , Tomography, X-Ray Computed , Ultrasonography , COVID-19/epidemiology , Consensus , Humans , Italy/epidemiology , Pandemics , Practice Guidelines as Topic , Radiography, Thoracic , Radiology Department, Hospital , Radiology, Interventional , Sensitivity and Specificity , Societies, Medical , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/statistics & numerical data
3.
PLoS One ; 16(6): e0253327, 2021.
Article in English | MEDLINE | ID: covidwho-1269922

ABSTRACT

BACKGROUND: The National Health Service (NHS) abdominal aortic aneurysm (AAA) screening programme (NAAASP) in England screens 65-year-old men. The programme monitors those with an aneurysm, and early intervention for large aneurysms reduces ruptures and AAA-related mortality. AAA screening services have been disrupted following COVID-19 but it is not known how this may impact AAA-related mortality, or where efforts should be focussed as services resume. METHODS: We repurposed a previously validated discrete event simulation model to investigate the impact of COVID-19-related service disruption on key outcomes. This model was used to explore the impact of delayed invitation and reduced attendance in men invited to screening. Additionally, we investigated the impact of temporarily suspending scans, increasing the threshold for elective surgery to 7cm and increasing drop-out in the AAA cohort under surveillance, using data from NAAASP to inform the population. FINDINGS: Delaying invitation to primary screening up to two years had little impact on key outcomes whereas a 10% reduction in attendance could lead to a 2% lifetime increase in AAA-related deaths. In surveillance patients, a 1-year suspension of surveillance or increase in the elective threshold resulted in a 0.4% increase in excess AAA-related deaths (8% in those 5-5.4cm at the start). Longer suspensions or a doubling of drop-out from surveillance would have a pronounced impact on outcomes. INTERPRETATION: Efforts should be directed towards encouraging men to attend AAA screening service appointments post-COVID-19. Those with AAAs on surveillance should be prioritised as the screening programme resumes, as changes to these services beyond one year are likely to have a larger impact on surgical burden and AAA-related mortality.


Subject(s)
Aortic Aneurysm, Abdominal/diagnosis , Aortic Rupture/prevention & control , COVID-19/prevention & control , Mass Screening/statistics & numerical data , Models, Statistical , Age Factors , Aged , Aortic Aneurysm, Abdominal/complications , Aortic Aneurysm, Abdominal/mortality , Aortic Aneurysm, Abdominal/surgery , Aortic Rupture/etiology , Aortic Rupture/mortality , COVID-19/epidemiology , COVID-19/transmission , Communicable Disease Control/standards , Computer Simulation , Cost of Illness , Elective Surgical Procedures/standards , Elective Surgical Procedures/statistics & numerical data , England/epidemiology , Health Policy , Humans , Male , Mass Screening/organization & administration , Mass Screening/standards , Pandemics/prevention & control , Patient Acceptance of Health Care/statistics & numerical data , Risk Assessment/statistics & numerical data , Risk Factors , Severity of Illness Index , State Medicine/standards , State Medicine/statistics & numerical data , Time-to-Treatment , Ultrasonography/standards , Ultrasonography/statistics & numerical data
4.
Cochrane Database Syst Rev ; 3: CD013639, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1159778

ABSTRACT

BACKGROUND: The respiratory illness caused by SARS-CoV-2 infection continues to present diagnostic challenges. Our 2020 edition of this review showed thoracic (chest) imaging to be sensitive and moderately specific in the diagnosis of coronavirus disease 2019 (COVID-19). In this update, we include new relevant studies, and have removed studies with case-control designs, and those not intended to be diagnostic test accuracy studies. OBJECTIVES: To evaluate the diagnostic accuracy of thoracic imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected COVID-19. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 30 September 2020. We did not apply any language restrictions. SELECTION CRITERIA: We included studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19 and that reported estimates of test accuracy or provided data from which we could compute estimates. DATA COLLECTION AND ANALYSIS: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using the QUADAS-2 domain-list. We presented the results of estimated sensitivity and specificity using paired forest plots, and we summarised pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. We presented the uncertainty of accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS: We included 51 studies with 19,775 participants suspected of having COVID-19, of whom 10,155 (51%) had a final diagnosis of COVID-19. Forty-seven studies evaluated one imaging modality each, and four studies evaluated two imaging modalities each. All studies used RT-PCR as the reference standard for the diagnosis of COVID-19, with 47 studies using only RT-PCR and four studies using a combination of RT-PCR and other criteria (such as clinical signs, imaging tests, positive contacts, and follow-up phone calls) as the reference standard. Studies were conducted in Europe (33), Asia (13), North America (3) and South America (2); including only adults (26), all ages (21), children only (1), adults over 70 years (1), and unclear (2); in inpatients (2), outpatients (32), and setting unclear (17). Risk of bias was high or unclear in thirty-two (63%) studies with respect to participant selection, 40 (78%) studies with respect to reference standard, 30 (59%) studies with respect to index test, and 24 (47%) studies with respect to participant flow. For chest CT (41 studies, 16,133 participants, 8110 (50%) cases), the sensitivity ranged from 56.3% to 100%, and specificity ranged from 25.4% to 97.4%. The pooled sensitivity of chest CT was 87.9% (95% CI 84.6 to 90.6) and the pooled specificity was 80.0% (95% CI 74.9 to 84.3). There was no statistical evidence indicating that reference standard conduct and definition for index test positivity were sources of heterogeneity for CT studies. Nine chest CT studies (2807 participants, 1139 (41%) cases) used the COVID-19 Reporting and Data System (CO-RADS) scoring system, which has five thresholds to define index test positivity. At a CO-RADS threshold of 5 (7 studies), the sensitivity ranged from 41.5% to 77.9% and the pooled sensitivity was 67.0% (95% CI 56.4 to 76.2); the specificity ranged from 83.5% to 96.2%; and the pooled specificity was 91.3% (95% CI 87.6 to 94.0). At a CO-RADS threshold of 4 (7 studies), the sensitivity ranged from 56.3% to 92.9% and the pooled sensitivity was 83.5% (95% CI 74.4 to 89.7); the specificity ranged from 77.2% to 90.4% and the pooled specificity was 83.6% (95% CI 80.5 to 86.4). For chest X-ray (9 studies, 3694 participants, 2111 (57%) cases) the sensitivity ranged from 51.9% to 94.4% and specificity ranged from 40.4% to 88.9%. The pooled sensitivity of chest X-ray was 80.6% (95% CI 69.1 to 88.6) and the pooled specificity was 71.5% (95% CI 59.8 to 80.8). For ultrasound of the lungs (5 studies, 446 participants, 211 (47%) cases) the sensitivity ranged from 68.2% to 96.8% and specificity ranged from 21.3% to 78.9%. The pooled sensitivity of ultrasound was 86.4% (95% CI 72.7 to 93.9) and the pooled specificity was 54.6% (95% CI 35.3 to 72.6). Based on an indirect comparison using all included studies, chest CT had a higher specificity than ultrasound. For indirect comparisons of chest CT and chest X-ray, or chest X-ray and ultrasound, the data did not show differences in specificity or sensitivity. AUTHORS' CONCLUSIONS: Our findings indicate that chest CT is sensitive and moderately specific for the diagnosis of COVID-19. Chest X-ray is moderately sensitive and moderately specific for the diagnosis of COVID-19. Ultrasound is sensitive but not specific for the diagnosis of COVID-19. Thus, chest CT and ultrasound may have more utility for excluding COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. Future diagnostic accuracy studies should pre-define positive imaging findings, include direct comparisons of the various modalities of interest in the same participant population, and implement improved reporting practices.


Subject(s)
COVID-19/diagnostic imaging , Radiography, Thoracic , Tomography, X-Ray Computed , Ultrasonography , Adolescent , Adult , Aged , Bias , COVID-19 Nucleic Acid Testing/standards , Child , Confidence Intervals , Humans , Lung/diagnostic imaging , Middle Aged , Radiography, Thoracic/standards , Radiography, Thoracic/statistics & numerical data , Reference Standards , Sensitivity and Specificity , Tomography, X-Ray Computed/standards , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/standards , Ultrasonography/statistics & numerical data , Young Adult
6.
Cochrane Database Syst Rev ; 11: CD013639, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-946940

ABSTRACT

BACKGROUND: The respiratory illness caused by SARS-CoV-2 infection continues to present diagnostic challenges. Early research showed thoracic (chest) imaging to be sensitive but not specific in the diagnosis of coronavirus disease 2019 (COVID-19). However, this is a rapidly developing field and these findings need to be re-evaluated in the light of new research. This is the first update of this 'living systematic review'. This update focuses on people suspected of having COVID-19 and excludes studies with only confirmed COVID-19 participants. OBJECTIVES: To evaluate the diagnostic accuracy of thoracic imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected COVID-19. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 22 June 2020. We did not apply any language restrictions. SELECTION CRITERIA: We included studies of all designs that recruited participants of any age group suspected to have COVID-19, and which reported estimates of test accuracy, or provided data from which estimates could be computed. When studies used a variety of reference standards, we retained the classification of participants as COVID-19 positive or negative as used in the study. DATA COLLECTION AND ANALYSIS: We screened studies, extracted data, and assessed the risk of bias and applicability concerns using the QUADAS-2 domain-list independently, in duplicate. We categorised included studies into three groups based on classification of index test results: studies that reported specific criteria for index test positivity (group 1); studies that did not report specific criteria, but had the test reader(s) explicitly classify the imaging test result as either COVID-19 positive or negative (group 2); and studies that reported an overview of index test findings, without explicitly classifying the imaging test as either COVID-19 positive or negative (group 3). We presented the results of estimated sensitivity and specificity using paired forest plots, and summarised in tables. We used a bivariate meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS: We included 34 studies: 30 were cross-sectional studies with 8491 participants suspected of COVID-19, of which 4575 (54%) had a final diagnosis of COVID-19; four were case-control studies with 848 cases and controls in total, of which 464 (55%) had a final diagnosis of COVID-19. Chest CT was evaluated in 31 studies (8014 participants, 4224 (53%) cases), chest X-ray in three studies (1243 participants, 784 (63%) cases), and ultrasound of the lungs in one study (100 participants, 31 (31%) cases). Twenty-six per cent (9/34) of all studies were available only as preprints. Nineteen studies were conducted in Asia, 10 in Europe, four in North America and one in Australia. Sixteen studies included only adults, 15 studies included both adults and children and one included only children. Two studies did not report the ages of participants. Twenty-four studies included inpatients, four studies included outpatients, while the remaining six studies were conducted in unclear settings. The majority of included studies had a high or unclear risk of bias with respect to participant selection, index test, reference standard, and participant flow. For chest CT in suspected COVID-19 participants (31 studies, 8014 participants, 4224 (53%) cases) the sensitivity ranged from 57.4% to 100%, and specificity ranged from 0% to 96.0%. The pooled sensitivity of chest CT in suspected COVID-19 participants was 89.9% (95% CI 85.7 to 92.9) and the pooled specificity was 61.1% (95% CI 42.3 to 77.1). Sensitivity analyses showed that when the studies from China were excluded, the studies from other countries demonstrated higher specificity compared to the overall included studies. When studies that did not classify index tests as positive or negative for COVID-19 (group 3) were excluded, the remaining studies (groups 1 and 2) demonstrated higher specificity compared to the overall included studies. Sensitivity analyses limited to cross-sectional studies, or studies where at least two reverse transcriptase polymerase chain reaction (RT-PCR) tests were conducted if the first was negative, did not substantively alter the accuracy estimates. We did not identify publication status as a source of heterogeneity. For chest X-ray in suspected COVID-19 participants (3 studies, 1243 participants, 784 (63%) cases) the sensitivity ranged from 56.9% to 89.0% and specificity from 11.1% to 88.9%. The sensitivity and specificity of ultrasound of the lungs in suspected COVID-19 participants (1 study, 100 participants, 31 (31%) cases) were 96.8% and 62.3%, respectively. We could not perform a meta-analysis for chest X-ray or ultrasound due to the limited number of included studies. AUTHORS' CONCLUSIONS: Our findings indicate that chest CT is sensitive and moderately specific for the diagnosis of COVID-19 in suspected patients, meaning that CT may have limited capability in differentiating SARS-CoV-2 infection from other causes of respiratory illness. However, we are limited in our confidence in these results due to the poor study quality and the heterogeneity of included studies. Because of limited data, accuracy estimates of chest X-ray and ultrasound of the lungs for the diagnosis of suspected COVID-19 cases should be carefully interpreted. Future diagnostic accuracy studies should pre-define positive imaging findings, include direct comparisons of the various modalities of interest on the same participant population, and implement improved reporting practices. Planned updates of this review will aim to: increase precision around the accuracy estimates for chest CT (ideally with low risk of bias studies); obtain further data to inform accuracy of chest X-rays and ultrasound; and obtain data to further fulfil secondary objectives (e.g. 'threshold' effects, comparing accuracy estimates across different imaging modalities) to inform the utility of imaging along different diagnostic pathways.


Subject(s)
COVID-19/diagnostic imaging , Radiography, Thoracic , SARS-CoV-2 , Tomography, X-Ray Computed , Ultrasonography , Adult , Bias , Case-Control Studies , Child , Cross-Sectional Studies/statistics & numerical data , Diagnostic Errors/statistics & numerical data , Humans , Lung/diagnostic imaging , Radiography, Thoracic/statistics & numerical data , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , Sensitivity and Specificity , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/statistics & numerical data
7.
PLoS One ; 15(11): e0242084, 2020.
Article in English | MEDLINE | ID: covidwho-937223

ABSTRACT

BACKGROUND: The benefits of Point of Care Ultrasound (POCUS) are well established in the literature. As it is an operator-dependent modality, the operator is required to be skilled in obtaining and interpreting images. Physicians who are not trained in POCUS attend courses to acquire the basics in this field. The effectiveness of such short POCUS courses on daily POCUS utilization is unknown. We sought to measure the change in POCUS utilization after practicing physicians attended short POCUS courses. METHODS: A 13-statements questionnaire was sent to physicians who attended POCUS courses conducted at the Soroka University Medical Center between the years 2014-2018. Our primary objective was to compare pre-course and post-course POCUS utilization. Secondary objectives included understanding the course graduates' perceived effect of POCUS on diagnosis, the frequency of ultrasound utilization and time to effective therapy. RESULTS: 212 residents and specialists received the questionnaire between 2014-2018; 116 responded (response rate of 54.7%). 72 (62.1%) participants were male, 64 (55.2%) were residents, 49 (42.3%) were specialists, 3 (2.5%) participants did not state their career status. 90 (77.6%) participants declared moderate use or multiple ultrasound use six months to four years from the POCUS course, compared to a rate of 'no use at all' and 'minimal use of 84.9% before the course. 98 participants [84.4% CI 77.8%, 91.0%] agree and strongly agree that a short POCUS course may improve diagnostic skills and 76.7% [CI 69.0%, 84.3%] agree and strongly agree that the POCUS course may shorten time to diagnosis and reduce morbidity. CONCLUSIONS: Our short POCUS course significantly increases bedside ultrasound utilization by physicians from different fields even 4 years from course completion. Course graduates strongly agreed that incorporating POCUS into their clinical practice improves patient care. Such courses should be offered to residents and senior physicians to close the existing gap in POCUS knowledge among practicing physicians.


Subject(s)
Education, Medical/methods , Point-of-Care Systems , Ultrasonography/statistics & numerical data , Clinical Competence , Female , Humans , Internship and Residency , Male , Practice Guidelines as Topic , Practice Patterns, Physicians' , Surveys and Questionnaires
8.
Avian Dis ; 64(2): 149-156, 2020 06.
Article in English | MEDLINE | ID: covidwho-892406

ABSTRACT

Infection of the oviduct by an infectious bronchitis virus (IBV) in laying hens has been associated with the false layer syndrome. Because the diagnostic procedure for the detection of cystic oviducts by postmortem examinations in IBV-positive replacement pullet flocks could involve the unnecessary sacrifice of numerous healthy pullets without reproductive tract anomalies, the development of a noninvasive and nonlethal diagnostic procedure would be desirable. The first objective of the study was to evaluate the diagnostic accuracy of a transcutaneous ultrasonography method to predict the presence of cystic oviducts compared to postmortem examinations in a commercial pullet flock positive for an IBV genotype Delmarva (DMV) variant. The second objective was to evaluate the performance of the same ultrasonography method to later detect false layers in the same flock in sexually mature hens by identifying the presence of an egg in the oviduct due to the presence of atretic oviducts undetectable by ultrasonography and the absence of cystic oviducts at that age. In replacement pullets, the sensitivity (Se) and specificity (Sp) of the ultrasonography (index test) compared to the postmortem examination (reference standard test) were 73% and 91%, respectively. The positive predictive value (PPV) and negative predictive value (NPV) were 67% and 93%. The ultrasonography technique showed a positive likelihood ratio (LR+) of 7.82 and a negative likelihood ratio (LR-) of 0.30. In sexually mature hens, the Se, Sp, PPV, and NPV of the ultrasonography compared to the laying status were 98%. The LR+ was 49.00 and the LR- was 0.02 when compared to the laying status. In conclusion, the ultrasonography could replace postmortem examinations to detect cystic oviducts in commercial flocks of replacement pullets previously infected with an IBV-DMV 1639 variant. Although the test accuracy of ultrasonography was excellent for the hens at production peak to identify laying and nonlaying hens based on the presence of an egg in the reproductive tract, its practicality was limited due to atretic oviducts being not detectable.


Precisión diagnóstica de la ultrasonografía para detectar gallinas falsas ponedoras en una parvada comercial infectada por un virus de la bronquitis infecciosa genotipo Delmarva que causa oviductos quísticos. La infección del oviducto por el virus de bronquitis infecciosa (IBV) en gallinas de postura se ha asociado con el síndrome de la falsa ponedora. Debido a que el procedimiento de diagnóstico para la detección de oviductos quísticos mediante exámenes post mortem en parvadas de pollitas de reemplazo positivas para bronquitis infecciosa podría involucrar el sacrificio innecesario de numerosas pollitas sanas sin anomalías del tracto reproductivo, por lo tanto es deseable el desarrollo de un procedimiento de diagnóstico no invasivo y no letal. El primer objetivo del estudio fue evaluar la precisión diagnóstica de un método de ultrasonografía transcutánea para predecir la presencia de oviductos quísticos en comparación con los exámenes post mortem en un lote comercial de pollitas que resultó positivo para una variante del genotipo Delmarva (DMV) del virus de la bronquitos infecciosa. El segundo objetivo fue evaluar el desempeño del mismo método de ultrasonografía para detectar posteriormente gallinas falsas en la misma parvada en las gallinas sexualmente maduras mediante la identificación de la presencia de un huevo en el oviducto debido a la presencia de oviductos atrésicos indetectables por ultrasonografía y la ausencia de oviductos quísticos a esa edad. En las pollitas de reemplazo, la sensibilidad (Se) y la especificidad (Sp) de la ultrasonografía (prueba de índice) en comparación con el examen post mortem (prueba estándar de referencia) fueron de 73% y 91%, respectivamente. El valor predictivo positivo (VPP) y el valor predictivo negativo (VPN) fueron 67% y 93%. La técnica de ultrasonografía mostró una razón de probabilidad positiva (LR+) de 7.82 y una razón de probabilidad negativa (LR­) de 0.30. En las gallinas sexualmente maduras, la Se, Sp, PPV y NPV de la ultrasonografía en comparación con el estado de postura fueron del 98%. El LR + fue 49.00 y el LR­fue 0.02 en comparación con el estado de la postura. En conclusión, la ultrasonografía podría reemplazar los exámenes post mortem para detectar oviductos quísticos en parvadas comerciales de pollitas de reemplazo previamente infectadas con una variante DMV-1639 del virus de la bronquitis infecciosa. Aunque la precisión de la prueba de la ecografía fue excelente para las gallinas en el pico de producción para identificar gallinas ponedoras y no ponedoras en función de la presencia de un huevo en el tracto reproductivo, su funcionalidad fue limitada debido a que los oviductos atrésicos no fueron detectables.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Cysts/veterinary , Infectious bronchitis virus/isolation & purification , Poultry Diseases/diagnosis , Ultrasonography/veterinary , Animals , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Cysts/virology , Female , Oviducts/virology , Poultry Diseases/virology , Ultrasonography/statistics & numerical data
9.
Cochrane Database Syst Rev ; 9: CD013639, 2020 09 30.
Article in English | MEDLINE | ID: covidwho-809177

ABSTRACT

BACKGROUND: The diagnosis of infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents major challenges. Reverse transcriptase polymerase chain reaction (RT-PCR) testing is used to diagnose a current infection, but its utility as a reference standard is constrained by sampling errors, limited sensitivity (71% to 98%), and dependence on the timing of specimen collection. Chest imaging tests are being used in the diagnosis of COVID-19 disease, or when RT-PCR testing is unavailable. OBJECTIVES: To determine the diagnostic accuracy of chest imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected or confirmed COVID-19. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, and The Stephen B. Thacker CDC Library. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 5 May 2020. SELECTION CRITERIA: We included studies of all designs that produce estimates of test accuracy or provide data from which estimates can be computed. We included two types of cross-sectional designs: a) where all patients suspected of the target condition enter the study through the same route and b) where it is not clear up front who has and who does not have the target condition, or where the patients with the target condition are recruited in a different way or from a different population from the patients without the target condition. When studies used a variety of reference standards, we included all of them. DATA COLLECTION AND ANALYSIS: We screened studies and extracted data independently, in duplicate. We also assessed the risk of bias and applicability concerns independently, in duplicate, using the QUADAS-2 checklist and presented the results of estimated sensitivity and specificity, using paired forest plots, and summarised in tables. We used a hierarchical meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS: We included 84 studies, falling into two categories: studies with participants with confirmed diagnoses of COVID-19 at the time of recruitment (71 studies with 6331 participants) and studies with participants suspected of COVID-19 (13 studies with 1948 participants, including three case-control studies with 549 cases and controls). Chest CT was evaluated in 78 studies (8105 participants), chest X-ray in nine studies (682 COVID-19 cases), and chest ultrasound in two studies (32 COVID-19 cases). All evaluations of chest X-ray and ultrasound were conducted in studies with confirmed diagnoses only. Twenty-five per cent (21/84) of all studies were available only as preprints, 15/71 studies in the confirmed cases group and 6/13 of the studies in the suspected group. Among 71 studies that included confirmed cases, 41 studies had included symptomatic cases only, 25 studies had included cases regardless of their symptoms, five studies had included asymptomatic cases only, three of which included a combination of confirmed and suspected cases. Seventy studies were conducted in Asia, 2 in Europe, 2 in North America and one in South America. Fifty-one studies included inpatients while the remaining 24 studies were conducted in mixed or unclear settings. Risk of bias was high in most studies, mainly due to concerns about selection of participants and applicability. Among the 13 studies that included suspected cases, nine studies were conducted in Asia, and one in Europe. Seven studies included inpatients while the remaining three studies were conducted in mixed or unclear settings. In studies that included confirmed cases the pooled sensitivity of chest CT was 93.1% (95%CI: 90.2 - 95.0 (65 studies, 5759 cases); and for X-ray 82.1% (95%CI: 62.5 to 92.7 (9 studies, 682 cases). Heterogeneity judged by visual assessment of the ROC plots was considerable. Two studies evaluated the diagnostic accuracy of point-of-care ultrasound and both reported zero false negatives (with 10 and 22 participants having undergone ultrasound, respectively). These studies only reported True Positive and False Negative data, therefore it was not possible to pool and derive estimates of specificity. In studies that included suspected cases, the pooled sensitivity of CT was 86.2% (95%CI: 71.9 to 93.8 (13 studies, 2346 participants) and specificity was 18.1% (95%CI: 3.71 to 55.8). Heterogeneity judged by visual assessment of the forest plots was high. Chest CT may give approximately the same proportion of positive results for patients with and without a SARS-CoV-2 infection: the chances of getting a positive CT result are 86% (95% CI: 72 to 94) in patient with a SARS-CoV-2 infection and 82% (95% CI: 44 to 96) in patients without. AUTHORS' CONCLUSIONS: The uncertainty resulting from the poor study quality and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results. Our findings indicate that chest CT is sensitive but not specific for the diagnosis of COVID-19 in suspected patients, meaning that CT may not be capable of differentiating SARS-CoV-2 infection from other causes of respiratory illness. This low specificity could also be the result of the poor sensitivity of the reference standard (RT-PCR), as CT could potentially be more sensitive than RT-PCR in some cases. Because of limited data, accuracy estimates of chest X-ray and ultrasound of the lungs for the diagnosis of COVID-19 should be carefully interpreted. Future diagnostic accuracy studies should avoid cases-only studies and pre-define positive imaging findings. Planned updates of this review will aim to: increase precision around the accuracy estimates for CT (ideally with low risk of bias studies); obtain further data to inform accuracy of chest X rays and ultrasound; and continue to search for studies that fulfil secondary objectives to inform the utility of imaging along different diagnostic pathways.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Adult , COVID-19 , COVID-19 Testing , Child , Coronavirus Infections/diagnosis , Humans , Lung/diagnostic imaging , Pandemics , Radiography, Thoracic/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/statistics & numerical data
10.
Pediatrics ; 146(6)2020 12.
Article in English | MEDLINE | ID: covidwho-793123

ABSTRACT

BACKGROUND: Variability in presentation of children with coronavirus disease 2019 (COVID-19) is a challenge in emergency departments (EDs) in terms of early recognition, which has an effect on disease control and prevention. We describe a cohort of 170 children with COVID-19 and differences with the published cohorts. METHODS: Retrospective chart reviews on children (0-18 years) evaluated in 17 Italian pediatric EDs. RESULTS: In our cohort (median age of 45 months; interquartile range of 4 months-10.7 years), we found a high number of patients <1 year with COVID-19 disease. The exposure happened mainly (59%) outside family clusters; 22% had comorbidities. Children were more frequently asymptomatic (17%) or with mild diseases (63%). Common symptoms were cough (43%) and difficulty feeding (35%). Chest computed tomography, chest radiograph, and point-of-care lung ultrasound were used in 2%, 36%, and 8% of cases, respectively. Forty-three percent of patients were admitted because of their clinical conditions. The minimal use of computed tomography and chest radiograph may have led to a reduced identification of moderate cases, which may have been clinically classified as mild cases. CONCLUSIONS: Italian children evaluated in the ED infrequently have notable disease symptoms. For pediatrics, COVID-19 may have rare but serious and life-threatening presentations but, in the majority of cases, represents an organizational burden for the ED. These data should not lower the attention to and preparedness for COVID-19 disease because children may represent a source of viral transmission. A clinically driven classification, instead of a radiologic, could be more valuable in predicting patient needs and better allocating resources.


Subject(s)
COVID-19/epidemiology , Emergency Service, Hospital/statistics & numerical data , SARS-CoV-2 , Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/diagnostic imaging , COVID-19 Testing/statistics & numerical data , Child , Child, Preschool , Female , Humans , Infant , Italy/epidemiology , Male , Point-of-Care Testing/statistics & numerical data , Radiography, Thoracic/statistics & numerical data , Retrospective Studies , Symptom Assessment , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/statistics & numerical data
11.
Eur Radiol ; 31(3): 1185-1193, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-774373

ABSTRACT

OBJECTIVES: This survey conducted by the International Society of Radiology and supported by the European Society of Radiology aimed to collect information regarding radiology departments' current practices in the management of patients with COVID-19. METHODS: Responses from 50 radiology departments involved in the management of COVID-19 patients representing 33 countries across all continents were analyzed. The analysis revealed important variations in imaging practices related to COVID-19 across the world for different disease severity and various clinical scenarios. RESULTS: Imaging is usually not performed in asymptomatic patients (69% of institutions do not image) but is used at the end of confinement (in 60% of institutions). In the majority of institutions, chest imaging is used in suspected or confirmed patients with COVID-19 (89% and 94%). All imaging departments involved in this survey reported the use of imaging in COVID-19 patients showing severe symptoms or who were critically ill. However, there is a wide variation in imaging modality type used for each clinical scenario. The use of imaging is applied in line with existing guidelines and recommendations in 98% of institutions with structured reporting recorded in 58% of institutions. The vast majority of institutions reported a significant impact of the COVID-19 pandemic on the imaging department's routine activity (83%). CONCLUSION: We believe that the results of this survey will help to understand current heterogeneities in radiology practice and to identify needs and gaps in the organization and function of radiology departments worldwide in relation to the COVID-19 pandemic. The results of this survey may inform the development of an overall strategy for radiology department organization and imaging protocols in pandemic conditions. KEY POINTS: • The results of this survey, which included responses from 50 radiology departments representing 33 countries, showed important variations in imaging practices related to COVID-19 across the world. • While imaging is usually not performed in asymptomatic patients (69% of institutions), it is used in suspected or confirmed patients with COVID-19, in COVID-19 patients showing severe symptoms or who were critically ill, and at the end of confinement (89%, 94%, 100%, 100%, 60% of institutions, respectively). However, there is a wide variation in imaging modality type used for each clinical scenario. • In 98% of institutions, the use of imaging is applied in line with existing guidelines and recommendations, with structured reporting recorded in 58% of institutions. COVID-19 pandemic made a significant impact on the imaging department's routine activity in 83% of institutions.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Practice Patterns, Physicians'/statistics & numerical data , Radiography, Thoracic/statistics & numerical data , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/statistics & numerical data , COVID-19/physiopathology , Carrier State/diagnostic imaging , Humans , Internationality , Magnetic Resonance Imaging/statistics & numerical data , Pandemics , Radiography , Radiology Department, Hospital , SARS-CoV-2 , Severity of Illness Index , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL